Artemis

Tutorial: Create Programming Exercises

1. Open Course Management

e https://artemis.ase.in.tum.de/#/course-management

* Navigate into Exercises of your preferred course

Courses Show only active courses

IDs Titles Access Groups Starte End% Online Courses Presentation Scores

. 5 Test Students: artemis-test-students (0) No No
Short Name: test Tutors: artemis-test-tutors (0)
Instructors: artemis-test-instructors (0)

https://artemis.ase.in.tum.de/#/course-management

2. Generate programming exercise

 Click on Generate new programming exercise

Test - O Exercises

Programming Exercises v

No Programming Exercises nerate new Pr ing Exercise | < Import new Programming Exercise

2. Generate programming exercise

* Fill out all required values and click on Generate

Max Score

Generate new Programming Exercise
Title @

I Adapter Patter

Short Name @

I adapter

Preview @

Build Plans

"M TESTADAPTER-BASE [2)
'S TESTADAPTER-SOLUTION 2]

Repositories

: ©
(M testadapter-solution (2,
. o

Categories @

Difficulty

No Level Medium Hard

Mode @

GGIIGOEIN Team

Programming Language
| Java
Package Name

I de.tum.in.ase

Timeline of the whole programming exercise @

Release Date €& Automatic Tests & Due Date & Run Tests once after Due Date & Manual Review ©

o

1 |

Apr, 03 Apr, 10 not set not set
13:41 13:41

<>

| o

<>

Problem Statement

Edit Preview
BHIHHH“H <> V&’HE V%E HEH Style ~ Color | ik
Formula l [task] Task ||InsertTestCase v l Add task specific hint ~ ‘
1~ # Sorting with the Strategy Pattern
g In this exercise, we want to implement sorting algorithms and choose them based on runtime specific v
;- ### Part 1: Sorting
? First, we need to implement two sorting algorithms, in this case "MergeSort’ and "BubbleSort'.
g **You have the following tasks:**
ig 1. [task][Implement Bubble Sort](testBubbleSort)
12 Implement the method “performSort(List<Date>)" in the class "BubbleSort . Make sure to follow the Bukt
ii 2. [task][Implement Merge Sort](testMergeSort)
15 Implement the method “performSort(List<Date>)" in the class "MergeSort’ . Make sure to follow the Merc
i?- ### Part 2: Strategy Pattern
ig We want the application to apply different algorithms for sorting a "List™ of "Date’ objects.
20 Use the strategy pattern to select the right sorting algorithm at runtime.
g% **You have the following tasks:**
23

Sequential Test Runs @
Allow Online Editor

Publish Build Plan

Result: Programming Exercise

1 Programming Exercises <+ Generate new Programming Exercise | <+ Import new Programming Exercise
Short Max Build Publish Build Allow Online
ID$ Title$ Name ¢ Release Date ¢ Due Date ¢ Score $ Repositories Plans Plan$ Editor ¢
5 Adapter adapter Apr 3, 2020, Apr 10, 2020, 10 Template Template false true ® Scores & Edit in editor % Reset

Patter 1:41:45 PM 1:41:44 PM Solution Solution
Test

B Participations | & Manage Test Cases & Edit X Delete

e 3 repositories

 Template: template code, can be empty, all students receive this code at the beginning of the exercises

» Test: contains all test cases, e.g. based on JUnit, hidden for students
» Solution: solution code, typically hidden for students, can be made available after the exercise
e 2 build plans

 Template: also called BASE, basic configuration for the test + template repository, used to create
student build plans

» Solution: also called SOLUTION, configuration for the test + solution repository, used to manage test
cases and to verify the exercise configuration

Result: Programming Exercise

Programming Exercise 5

Title
Adapter Patter

Short Name
adapter

Mode
INDIVIDUAL

Release Date

Apr 3, 2020, 1:41:45 PM

Due Date

Apr 10, 2020, 1:41:44 PM

Run Tests once after Due Date

Max Score
10

Presentation Score enabled
No

Template Repository Url
https://artemistest2gitlab.ase.in.tum.de/TESTADAPTER/testadapter-
exercise.git

Solution Repository Url (optional)
https://artemistest2gitlab.ase.in.tum.de/TESTADAPTER/testadapter-
solution.git

Test Repository Url (optional)
https://artemistest2gitlab.ase.in.tum.de/TESTADAPTER/testadapter-tests.git

Template Build Plan Id
TESTADAPTER-BASE

Solution Build Plan Id (optional)
TESTADAPTER-SOLUTION

Sequential Test Runs
false

Publish Build Plan
false

Allow Online Editor
lrue

Programming Language
Java

Package Name
de.tum.in.ase

LTI
LTI Configuration

Template Result
® Score 0%, 0 of 13 passed (5 minutes ago)

Solution Result
) Score 100%, 13 of 13 passed (5 minutes ago)

Problem Statement

X X X X X X X

Sorting with the Strategy Pattern

In this exercise, we want to implement sorting algorithms and choose them
based on runtime specific variables.

Part 1: Sorting

First, we need to implement two sorting algorithms, in this case MergeSort and
BubbleSort.

You have the following tasks:

(%) Implement Bubble Sort 0 of 1 tests passing
1. Implement the method performSort(List<Date>) in the class
BubbleSort. Make sure to follow the Bubble Sort algorithm exactly.

(*) Implement Merge Sort 0 of 1 tests passing
2. Implement the method performSort(List<Date>) in the class
MergeSort. Make sure to follow the Merge Sort algorithm exactly.

Part 2: Strategy Pattern

We want the application to apply different algorithms for sorting a List of Date
objects. Use the strategy pattern to select the right sorting algorithm at
runtime.

You have the following tasks:

(%) SortStrategy Interface 0 of 2 tests passing
1. Create a SortStrateqy interface and adjust the sorting algorithms so
that they implement this interface.

©Client

E
@ Policy | context

+configure()

= |
© Context

> -dates: List<Date>

sortAlgorithm @ Sort.

+performSor

+sort()

© BubbleSort

+performSort(List<Date>)

Part 3: Optional Challenges

(These are not tested)

1. Create a new class QuickSort that implements SortStrategy and implement the
Quick Sort algorithm.

2. Make the method performSort(List<Dates>) generic, so that other objects can also
be sorted by the same method. Hint: Have a look at Java Generics and the interface
Comparable.

3. Think about a useful decision in Policy when to use the new QuickSort algorithm.

Grading Instructions

Combine Template Commits [28 Update Structure Test Oracle [2]

3. Update exercise code In repositories

* Alternative 1: Clone the 3 repositories and adapt the code on your local
computer in your preferred development environment (e.g. Eclipse)

* To execute tests, copy the template (or solution) code into a folder

assignment in the test repository and execute the tests (e.g. using maven
clean test)

« Commit and push your changes

* Alternative 2: Open Edit in Editor in Artemis (in the browser) and adapt the
code in online code editor

* You can change between the different repos and submit the code when
needed

* Alternative 3: Use Intellid with the Orion plugin and change the code directly in
Intellid

Edit in Editor

r

ztre

TEMPLATE ~ 4+ Create Assignment Repository ® 0%, 0 of 13 passed Save ® Submit
+5§ +m A

Edit Preview B Save

= = Style ~ Color - \

Formula [task] Task llnsertTestCase v] Add task specific hint ~

: &
No items found Select a file to get started! B I] U (|66 || < | 6 [5

1~ # Sorting with the Strategy Pattern

g In this exercise, we want to implement sorting algorithms and choose them base«
g. ### Part 1: Sorting

g First, we need to implement two sorting algorithms, in this case "MergeSort™ ai
1§ **You have the following tasks:**

11 1. [task][Implement Bubble Sort](testBubbleSort)
12 Implement the method “performSort(List<Date>)" in the class "BubbleSort’ . Make

14 2. [task][Implement Merge Sort](testMergeSort)
15 Implement the method “performSort(List<Date>)" in the class “MergeSort . Make :

& Saved. © Error. ® Saved. & Test cases ok. & Hints ok.

3. Update exercise code In repositories

 Check the results of the template and the solution build plan

* They should not have the status build failed

* |n case of a build failed result, some configuration is wrong, please check
the build errors on the corresponding build plan.

e Hints:

* Jest cases should only reference code, that is available in the template

repository. In case this is not possible, please try out the option
Sequential Test Runs

4. Optional: Adapt the build plans

* The build plans are preconfigured and typically do not need to be adapted

 However, if you have additional build steps or different configurations, you
can adapt the BASE and SOLUTION build plan as needed

 \WWhen students start the programming exercise, the current version of the
BASE build plan will be copied. All changes in the configuration will be

considered

5. Adapt the interactive problem statement

1 Programming Exercises <+ Generate new Programming Exercise | <+ Import new Programming Exercise

Short Max Build Publish Build Allow Online
ID$ Title$ Name ¢ Release Date ¢ Due Date ¢ S = Repositories Plans Plan$ Editor ¢
5 Adapter adapter Apr 3, 2020, Apr 10, 2020, 10 Template Template false true I & Edit in editor | ® View | XRese
Patter 1:41:45 PM 1:41:44 PM Solution Solution

Test # Manage Test Cases | & Edit I X Delete

e Click the Edit button of the programming exercise or navigate into Edit in
Editor and adapt the interactive problem statement.

* The initial example shows how to integrate tasks, link tests and integrate
iInteractive UML diagrams

6. Manage test cases

Manage Test Cases

Sh i tivate test A

Id Test Name Weight After Due Date @ Is Active
45 testAttributes[Context] 14 true

42 testAttributes[Policy] 14 true

47 testBubbleSort 14 true

50 testClass[BubbleSort] 14 true

43 testClass[MergeSort] 14 true

49 testClass[SortStrategy] 14 true

/. Verify the exercise configuration

* Open the View page of the programming exercise

Template Result
(%) Score 0%, 0 of 13 passed (18 minutes ago)

Solution Result
() Score 100%, 13 of 13 passed (18 minutes ago)

 The template result should have a score of 0% with O of X passed

 The solution result should have a score of 100% with X of X passed
 Click on Edit

 Below the problem statement, you should see Test cases ok and Hints ok

18

19 We want the application to apply different algorithms for sorting a "List™ of "Date” objects.
20 Use the strategy pattern to select the right sorting algorithm at runtime

21

22 **You have the following tasks:**

23

® Saved. & Test cases ok. & Hints ok.

